مقاومسایز ماده منفجره آنفو در برابر نفوذ آب

یونس موسایی اسکویی۱، رضا آرامی شام‌اسبی۲، حسن فتحی۳، علی موسوی‌آذر۴
ارومیه - یزد‌نشین که علوم و فناوری دفاعی شمال غرب - دانشگاه صنعتی مالک اشتر

*Email: mosaei@mut-es.ac.ir

(تاریخ وصول: 18/8/92، تاریخ پذیرش: 9/12/92)

چکیده

در این مقاله به بررسی اثر استفاده از سند ماده برای ایجاد منفجرات در برابر جدی آب برای ماده منفجره آنفو پرداخته شده است. به منظور نیل به این هدف، پس از آن‌چنین سندرم آن‌زمان غیرالگنگی، جهانی ماده شامل گاز دوم، بوراکس، سرسبیر، سریا (پودر گیاهة ceramurus)، پلیمر سوپر جذب سدیم پلی اکرلاته Minitab انتخاب گردید. ترکیب درصد مواد انتخاب شده به وسیله طراحی آزمایش به روش مخلوط، توسط نرم‌افزار بهره بانی‌سازی شد، در نهایت محصول بهره‌برداری ۹۰% آنفو و ۱۰% از مخلوط جهانی ماده معرفی شده در آزمون گیرانگی به دست آمد که میزان نفوذ آب بعد از گنشت ۱۲ ساعت، به ۱۰۰ نقطه در این محصول که درون یک استوانه مدرج ۲۵۰ml قرار داشت، حدود مشابه شد.

واژه‌های کلیدی: ماده منفجره آنفو، مخلوط مقاوم در برابر آب، طراحی آزمایش.

۱- مقدمه

آنفو۵، به معنی مخلوط آمونیوم نیترات و سوخت مايع، گرفته شده است. آمونیوم نیترات در بسیاری از مواد منفجره، بعنوان اسید کنده به کار می‌رود. برای یکی از مواد منفجره‌ای که به این‌نام شناخته می‌شود، مخلوط آن با سوخت مايع است، که به علت افزایش در فشار مورد نیاز این مواد منفجره، به طور کلی آنفو، شامل ۹۹% آمونیوم نیترات، به دانش‌های منبعاً در هنگام تولید، با یک عامل تنبیه که برای جلوگیری از جنگل‌گیری از چچندنگی در آن‌زمان نیترات پوشیده شده و ۶% سوخت مايع (برای افزایش

۵- Ammonium Nitrate Fuel Oil (ANFO)

3.1 - استاندارد
۴.۲ - کارشناسی ارشد

57
نمونه‌‌ها

۱- هیدروچرب
۲- نانوی آشامیده
۳- شیشه‌ساز
۴- جواهر گو
۵- پرفیل افزایش‌یافته
۶- آلمان
۷- آلت سرعت ۸- جوش‌کننده
۹- سکه

برای حل مشکل نگرانی‌ای که مصرف‌کننده در نظر گرفته و جذب آب، دو نوع از متغیرهای برای افزایش سطح دیواره معنی‌رسانی می‌کند: افزایش مقدار در بازدارنده آب و مصرف آب در مصرف همونیهای در بالا و در زیر مصرف‌کننده را بررسی می‌کند.

به آنها اصطلاحاً «سیستم‌های افزایش مقدار» می‌گویند. به عنوان گروهی ۴ نوع مقدار معنی‌پذیری به عنوان پرکننده فک خالی را بین پرکننده به ده‌های در سیستم‌های استندارد به عنوان یک مخلوط برای ساخت که به‌طور آزمایش‌گیری در این شرایط مورد استفاده قرار گرفته است. این استفاده از یک مخلوط به‌طور کلی به‌منظور افزایش مقدار معنی‌پذیری به عنوان جریان قرار گرفته شده است.

پیش از هر کاری باید برای ساخت که به‌منظور نگهداری و به‌منظور داشتن اطمینان حاصل شده برای نگهداری به این مقدار و به مرور مصرفی در کل مصرف‌کننده برای همین فرمول‌های زیر از آن به ویژه ۸۳٪ و ۹۷٪ ویژه از آن به ویژه مصرف‌کننده آزمایشی به عنوان منابع انتخاب شد.

۱- بخش تجربی

۲- یک مول ۱- افزایش مقدار

۳- مواد مورد استفاده در آزمون غربال کری خیس با ن鹳، افزایش گرام، بوراک، پودر اتمیت نیترات، بنی‌نویس، آدام و استراتی، کریت و پودر کلسیم سری سرمید پلی‌کریتات آنز، گرایل و پودر بیلامیت جاذب دسیم، پلی‌کریتات آنز، گرایل کام، بوراک، پودر اتمیت نیترات و صنایع شهری‌ای زیبای دیگر تهیه شده و بدست‌آورده شده، می‌باشد و بنی‌نویسی که از کارخانه بنی‌نویسی زبان زبان گردید. دریافتی از نوع مدل‌های جدید تهیه شده و به نهایت در نهایت استفاده مورد نظر صنعتی استفاده شده. تجربیات مورد نیاز برای از همین مکانیکی روش بررسی شده است. مقدار آزمایشات برای ایجاد تاریخ، ۲۵۰ ملی‌لیتر و خط کش.
2- روش انجام آزمایش
مقایسه هر ترکیب، بر حسب درصد وزنی؛ توزیع شده و به یک بشر با مدلی منقل می‌گردد و سپس با استفاده از یک همزن مکانیکی (با سرعت 500rpm) تا زمانی که تتراپیک خشخاشه به دست‌آید (که معمولاً حدود 45-30 ثانیه به طول می‌انجامد) محصولات مربوط با سیستم غرسی هم شده و سپس مخلوط حلال به درون استوانه مخلوط می‌گردد. در بالای استوانه أنفو کاغذ صاف قرار داده می‌شود تا آزادی آب از سر استوانه باعث ایجاد ضربه در سطح أنفو شود. سپس بر روی آن، مقادیر مشخصی آب (50ml) را در مدت زمان مشخص (به مدت 36 به مدت 10 ثانیه) ریخته می‌شود. بعد از سه ساعت شدن خشخاشی مدلی به عنوان مدار از مقاومت أنفو در زمان معینی (بعد از 12 ساعت) میزان نفوذ آب به درون آنفو (سیف) و فرمولاسیون دیده می‌شود که بنابر اثربخشی شدن زل تولیدی گوار-گام می‌باشد اما میزان نفوذ آب آنقدر زیاد است که حضور نفوذ از آن را باعث صپای نیز می‌شود که فقط در فرمولاسیون آخر، بعد از تقویت فرمولاسیون شماره 4 به وسیله آراپیش سری، مقاومت مناسبی دیده می‌شود (آزمایش شماره 5). که نتایج به دست آمده اثربخشی در معکر کردن زل تولید شده گوار-گام و شبکه‌ای شده توسط پوراکسی می‌باشد.

3- نتیجه‌گیری و بحث
1- آزمون غربالگری با پودر آمونیوم نیترات
با توجه به بازی از آزمون غربالگری ذکر شده در جدول 1 در ترکیبات شماره 1 تا 3، کل سنتون منفی مقدار درون استوانه کاملاً خیس شده است (از عبارت “عدم مقاومت مناسب” در جدول 1 برای بان خیس شدن کل سنتون استفاده شده است). در ترکیب 4، پس از گذشتن 1، کل سانتیمتر طول نموده و پس از گذشتن 24 ساعت، آب تا 80 درون نفوذ شده و نفوذ کرد و پس از گذشتن 24 ساعت میزان نفوذ آب به داخل سنتون منفی شده. برای آزمایشین نیترات به عنوان پرکننده، داخل در این نوع از آزمایش مناسبی ندارد. با توجه به آزمایشی شماره 4 و 2 دیده می‌شود که حتی با تقویت مقاومت در برابر آب با استفاده از گوار-گام و پوراکس هنوز هم مقاومت مناسب دیده نمی‌شود و کل سنتون خیس می‌گردد. اگرچه در آزمایش شماره 4 در مدت 1ک ساعت مقاومتی در فرمولاسیون دیده می‌شود که بنابر اثربخشی شدن زل تولیدی گوار-گام می‌باشد اما میزان نفوذ آب آنقدر زیاد است که حضور نفوذ از آن را باعث صپای نیز می‌شود که فقط در فرمولاسیون آخر، بعد از تقویت فرمولاسیون شماره 4 به وسیله آراپیش سری، مقاومت مناسبی دیده می‌شود (آزمایش شماره 5). که نتایج به دست آمده اثربخشی در معکر کردن زل تولید شده گوار-گام و شبکه‌ای شده توسط پوراکسی می‌باشد.

جدول 1- آزمون غربالگری و تعیین میزان تأثیر پودر آمونیوم نیترات (AN) بر مقاومت سازی در برابر آب

<table>
<thead>
<tr>
<th>شماره ترکیب</th>
<th>نفوذ بعد از یک بکوز (میلی متر)</th>
<th>نفوذ بعد از یک ساعت (%AN)</th>
<th>بوذر (%AN)</th>
<th>بوراکس (%AN)</th>
<th>ANFO (%AN)</th>
<th>گوار (%AN)</th>
<th>شماره ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>83</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>83</td>
<td>83</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>83</td>
<td>83</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>83</td>
<td>83</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>83</td>
<td>5</td>
</tr>
</tbody>
</table>
3-10 - آزمون غربال گری با سرش
سرش، یک ریشه خشکانه شده گیاه است که در تولید زه‌گذاری در این ایمنی به طور استثنایی گزارش شده است. این نوع از گیاه می‌تواند مناسب باشد که در ابتکار تولید مصرف شود بخاطر اینکه در اینجا مصرف می‌شود و احتمالاً گیاهی است که در آزمایشات قبل از شار مورد نظر ایجاد شده که در مورد آزمایش‌های 3 تا 6 در جدول 3 وجود سرش در فرمولاسیون باعث ایجاد مقاومت بیشتر و معتنادی شده است.

جدول 2 - آزمون غربال گری و تعیین اثر مقاومت بیشتر در بر اثر آب

<table>
<thead>
<tr>
<th>شماره</th>
<th>ترکیب</th>
<th>AN (%)</th>
<th>بانونوتین (%</th>
<th>باراکس (%)</th>
<th>گوار (%)</th>
<th>ANFO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>59</td>
<td>-</td>
<td>6</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>28</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول 3 - آزمون غربال گری و تعیین اثر مقاومت بیشتر در بر اثر آب

<table>
<thead>
<tr>
<th>شماره</th>
<th>ترکیب</th>
<th>AN (%)</th>
<th>بانونوتین (%</th>
<th>باراکس (%)</th>
<th>گوار (%)</th>
<th>ANFO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>24</td>
<td>-</td>
<td>17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>80</td>
<td>6</td>
<td>-</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>24</td>
<td>-</td>
<td>6</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>59</td>
<td>-</td>
<td>6</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>28</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1-Aphodelus Albus
3-4 آزمون غربالگری با آلومینیوم استاندارد

با این که نمکهای استاندارد، خاصیت آب‌گیری خوبی دارند و باعث ایجاد مقاومت بهتری در زمانهای کوتاه می‌شوند، اما با توجه به تأثیر ذکر شده در جدول 4، یپ از مدتی (معدل 3-2 ساعت) تمام مقاومت خود را از دست می‌دهند. نتیجه‌گیری در مورد نمکهای استاندارد، این است که این ترکیبات باعث نرم شدن و روحی شدن زل تولیدی توسط گوار گام، بوراکس و سری سی سی شود. مقاومت خوبی از زمان نیز نیاز دارد (آزمایش‌های 5-3). با مقایسه کردن نتایج آزمایش‌های شماره 5 و شماره 3، جدول 5، با توجه به مقایسه کردن نتایج آزمایش‌های شماره 4-3 جدول 4، می‌توان ادعا کرد که افزودن این پلیر به مخلوط گوار گام، بوراکس و سری در زمانهای طولانی از مدتی به دست می‌آید.

جدول 4- آزمون غربالگری و تعیین میزان تأثیر استاندارد آلومینیوم بر مقاوم سازی در برابر آب

<table>
<thead>
<tr>
<th>اندازه‌گیری بعد از یک روز (میلی‌متر)</th>
<th>گوارد</th>
<th>بوراکس</th>
<th>ANFO</th>
<th>شماره</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدم مقاومت مناسب</td>
<td>6</td>
<td>-</td>
<td>10</td>
<td>83</td>
<td>1</td>
</tr>
<tr>
<td>عدم مقاومت مناسب</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>83</td>
<td>3</td>
</tr>
<tr>
<td>عدم مقاومت مناسب</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>83</td>
<td>3</td>
</tr>
<tr>
<td>عدم مقاومت مناسب</td>
<td>24</td>
<td>2</td>
<td>10</td>
<td>83</td>
<td>4</td>
</tr>
<tr>
<td>عدم مقاومت مناسب</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>83</td>
<td>5</td>
</tr>
</tbody>
</table>

جدول 5- آزمون غربالگری و تعیین میزان تأثیر پلیر سورج جادب (SAP) بر مقاوم سازی در برابر آب

<table>
<thead>
<tr>
<th>اندازه‌گیری بعد از یک روز (میلی‌متر)</th>
<th>گوارد</th>
<th>بوراکس</th>
<th>ANFO</th>
<th>شماره</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدم مقاومت مناسب</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>83</td>
<td>1</td>
</tr>
<tr>
<td>عدم مقاومت مناسب</td>
<td>6</td>
<td>-</td>
<td>10</td>
<td>83</td>
<td>2</td>
</tr>
<tr>
<td>عدم مقاومت مناسب</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>83</td>
<td>3</td>
</tr>
<tr>
<td>عدم مقاومت مناسب</td>
<td>14</td>
<td>-</td>
<td>10</td>
<td>83</td>
<td>4</td>
</tr>
<tr>
<td>عدم مقاومت مناسب</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>83</td>
<td>5</td>
</tr>
<tr>
<td>عدم مقاومت مناسب</td>
<td>18</td>
<td>2</td>
<td>10</td>
<td>83</td>
<td>6</td>
</tr>
</tbody>
</table>
3-6 آزمون غربال گری با پودر پلیمر‌سورپ جاذب (SAP)
چون ارائه ذرات پلیمر به کار رفته در آزمایش‌های پلیمر‌های سوپر جاذب، کمی برگردید از دیگر ترکیبات مقاوم‌سازی در برای آب بود، لذا این پلیمر آسیب شد و نتایج پویا این پلیمر مقایسه شد و نتایج معادلی بین آنها دیده شد بنابراین در فرمول‌سازی نهایی از پودر پلیمر استفاده گردید. نتایج آزمایش با پودر پلیمر سوپر جاذب در جدول ۰۶ آب شد.

با نتایج به دست آمده اجزای تشکیل دهنده فرمول‌سازی به صورت زیر انتخاب شدند: آنفو، گوار کام، بوراکس، ژل پلیمر فقوت جاذب، اندازه ذرات اجزای به کار رفته در فرمول‌سازی نهایی در جدول ۰۷ جمع اوری شده است.

3-7 بیمه سازی
برای به دست آوردن مقدار بهینه (ترکیب درصد) هریک از اجزای فوق به دلیل استفاده از روش آزمون و خطا از طریق آزمایش نرم Minitab (طرح مخلوطی استفاده شد (پیوست ۱۰)). افزایش Minitab با انجام آزمایش‌های پیشنهادی در پودر آزمایشی مقاومت Minitab.

جدول ۰۶ - آزمون غربال گری و تعیین میزان تأثیر پویا پلیمر سورپ جاذب (SAP) بر مقاوم سازی در برای آب

<table>
<thead>
<tr>
<th>شماره</th>
<th>تركیب</th>
<th>ویور (نفوذ بعد از یک بک)</th>
<th>پسره (نفوذ بعد از یک بک)</th>
<th>بوراکس (ساعت بکی‌بی)</th>
<th>آلومینیوم (٪)</th>
<th>ANFO (٪)</th>
<th>گوار کام (٪)</th>
<th>شماره Minitab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>82</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>81</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>79</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>78</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>77</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>75</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>74</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

جدول ۰۷ - ارائه ذرات ترکیبات به کار گرفته شده برای تولید مخلوط فیزیکی مقاومت ساز در برای آب

<table>
<thead>
<tr>
<th>گوار کام</th>
<th>بوراکس روکش</th>
<th>پودر پلیمر فقوت</th>
<th>سریع</th>
<th>میکرون</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>510</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>520</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>530</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>540</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

جدول ۰۸ - ترکیب درصد بهینه معرفی شده توسط Minitab

<table>
<thead>
<tr>
<th>پلیمر</th>
<th>بوراکس رکش</th>
<th>گوار کام</th>
<th>آنتو</th>
<th>اجزاء</th>
</tr>
</thead>
<tbody>
<tr>
<td>855</td>
<td>10</td>
<td>0.5</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

62
برای داشتن اطمنیت از سحبت قابل قبول، حاصل از این تصور اطمنیت به دست آمد (رابطه (3)). باید مقادیر حجم نمونه محاسبه شود. با داشتن مقدار میانگین و واریانس نمونه‌ی 25‌میلی‌متری (رابطه (6)) و با استفاده از این نرم‌افزار می‌توانیم حجم نمونه‌ی (رابطه (7)) و جداگانه اختلاف بین میانگین‌ها واقعی موجود در جامعه و میانگین نمونه‌ی دسته‌آمده بازیابی شود. به دست آمده نمونه‌ی (n = 52)

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 10.6 \\
s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = 1.3
\]

\[
P(\bar{x} - \frac{s}{\sqrt{n}} \leq \mu < \bar{x} + \frac{s}{\sqrt{n}}) = 1 - \alpha
\]

\[
P(\frac{|\bar{x} - \mu|}{s / \sqrt{n}} > 3) = 1 - \alpha
\]

در همه آزمایش‌های فوق، فرمول‌سازی معیاری شده در نرم‌افزار که، که جدول (8) تولید و میزان نفوذ آب (میلی‌متری) در استوانه مدرج به دست آمده‌ای (زیر (رایه طرفین (10 میلی‌متری (رابطه (9)) در رابطه (9) به فاصله اطمنیت با دهای برای برای میانگین جامعه با انداده اطمنیت 95\% به‌دست آمده (رابطه (11) می‌رسید.

\[
n = 6, \quad \alpha = 0.05, \quad t_{(n-1), \alpha/2} = 2.57
\]

\[
\bar{x} = \frac{1}{6} \sum_{i=1}^{6} x_i = 10.5, \quad s^2 = \frac{1}{6} \sum_{i=1}^{6} (x_i - \bar{x})^2 = 1.1
\]

\[
P(9.4 < \mu < 11.4) = 0.95
\]
۴- نتیجه گیری
پس از بررسی آماری جنده ماده در ایجاد مقاومت در برای نفوذ آب، چهار ماده گیاه، بهترین روش برای ریک در برای نفوذ آب
Minitab بیشترین تعداد درصد این مواد با بردازگر
به دست آورده تعداد درصدی شد که چندان مخاطب
فیزیکی با حفظ
نفوذ آب در درون سنین
۱۰۰۰ اضافه داخل
گردنگی با شش بار از امواج این تغییر در
تأییدسازی آماده شدن و این تغییر در
عوامل محفوظ
این تحقیق برای گردنگی هزینه کم تهیه مواد اوبره، جامد بودن
پایداری باید در شرایط معاف مراکز و یافته آن با محفظه
وزیگنها این مخاطب فیزیکی می‌باشد، با توجه به این نکته که این
مختل بوده، فاصله بین گروه‌های انقیف را بر می‌کند، دانشگاه
برادگرای افرادی می‌باشد، بدون آنکه این کار با یافته مخاطب
مقاوم در برای آب، از دانشگاه ماده پراتزی کانتوری شود بنابراین این
نوع مخاطب فیزیکی مقاوم ساز در برای نفوذ آب آب می‌تواند تنها قابل
تأمیل با منظور استفاده در جمال های دارای رطوبت واچاله‌ای خیس
پس از آب‌زدایی باشد

در نتیجه فاصله (11) بک فواصل انقلابی (α=0.01) برای
با زمان قرار می‌گیرد، لذا
نیم‌تان فرض را رد کرد

H_0 همان‌طور که از دیدگاه بالای یکدیگر، دلایل کافی برای رد فرض
وجود دارد، بنابراین با ($\alpha=0.05$) می‌باشد، این مقاومت در
فصل انقلابی به انتها ($1-\alpha$) دربندواره
Minitab (ر) که جدول
(8) در ترکیبات نیم‌تان قسمت نیست و خاتمه‌های شده ناشی از
خاله‌های طبیعی آزمایش است.

با توجه به این نکته تشکیل دهنده این مخاطب (ترکیب درصد
مطاف برای دست در جدول (8)، ارزان قیمت بوده و پایداری آنها در شرایط
مطاف برای باید آلوده نیست که هزینه این مخاطب تشکیل می‌کنه
Minitab
.

امکان دریافت منظور به
امکان تنومنده
انفجاری بر یک انقیف می‌باشد، سازگاری بالایی این مواد با محفظه
و عدم ایجاد انقیفی زیست محیطی آنها در صورت ورود به طبیعت
این مواد را در هر سر سنیر داده است، لازم به ذکر است که گزار
گام و سریف گیاهی داشته، برازک نیز یک کالی طبیعی
یمی‌باشد سیلر سنیر باید و یک اپن‌گرایانه نیز، پیامدر سنزی
یمی‌باشد که نشان‌گر فرمولای
امکان تنومنده
گزار
امکان تنومنده
با
امکان تنومنده
از ترکیب درصد بهره معفون شده توسط رزم ازار
Minitab (ر) که به
جدول (8)، و نتایج معبر سازی آماری فرمولای
هست. نتایج زیر

احصل مقدار
الف- متوسط میزان نفوذ آب به سنتون حاوی منفجره انقیف (ب) ترکیب
درصد بهره معفون شده در جدول (8) 105 mm می‌باشد، این اگر
بر روی سنتون از منفجره انقیف (یا ترکیب درصد بهره معفون شده در
جدول (8) مطابق به شرایط تست، آب ریخته شود آب به طور متوسط
جدول (8) می‌تواند در سنتون منفجره انقیف مقدار در برای آب نفوذ
کند، پسینس مناسبی را برای استفاده از این منفجره (با ترکیب درصد
بهره معفون شده در جدول (8) در جمالهای مرطوب و یا چاله‌های
خیس سپس از آب‌زدایی راه می‌کند
ب- این میزان نفوذ، با خشکی اندازه گیری 1m دارای هیچ‌گونه
خطری سیستماتیک می‌باشد (حدود انقلابی، با احتمال 95، باره

\(\mu = 105\) در این

\(\alpha = 0.05\)

\(\mu \neq 0\)

\(\alpha = 0.01\)
<table>
<thead>
<tr>
<th>آزمایش‌های استاندارد</th>
<th>آزمایش‌های اجرا</th>
<th>نوع اجرا</th>
<th>بلوک‌ها</th>
<th>انف</th>
<th>گوار کام</th>
<th>پرداخت</th>
<th>سری</th>
<th>میزان پی- اکریلات</th>
<th>میزان پی- اکریلات</th>
<th>میزان پی- اکریلات</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.87750</td>
<td>0.0750</td>
<td>0.00750</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>0.89875</td>
<td>0.0625</td>
<td>0.00875</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>0.87625</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>-1</td>
<td>1</td>
<td>0.87375</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0.88000</td>
<td>0.0500</td>
<td>0.01000</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0.92000</td>
<td>0.0500</td>
<td>0.01000</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0.88500</td>
<td>0.0500</td>
<td>0.00500</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>-1</td>
<td>1</td>
<td>0.88125</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0.89300</td>
<td>0.1000</td>
<td>0.01000</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>-1</td>
<td>1</td>
<td>0.88125</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>-1</td>
<td>1</td>
<td>0.85625</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0.92500</td>
<td>0.0500</td>
<td>0.00500</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0.87500</td>
<td>0.1000</td>
<td>0.00500</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>33</td>
<td>14</td>
<td>-1</td>
<td>1</td>
<td>0.87375</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0.88000</td>
<td>0.0500</td>
<td>0.01000</td>
<td>0.00</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0.83500</td>
<td>0.1000</td>
<td>0.00500</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0.83500</td>
<td>0.1000</td>
<td>0.00500</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>22</td>
<td>18</td>
<td>-1</td>
<td>1</td>
<td>0.85625</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>-1</td>
<td>1</td>
<td>0.85375</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>0.87000</td>
<td>0.1000</td>
<td>0.01000</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>30</td>
<td>21</td>
<td>-1</td>
<td>1</td>
<td>0.87625</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>24</td>
<td>22</td>
<td>-1</td>
<td>1</td>
<td>0.87875</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>0.92500</td>
<td>0.0500</td>
<td>0.00500</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>26</td>
<td>24</td>
<td>-1</td>
<td>1</td>
<td>0.90125</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>16</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0.87000</td>
<td>0.1000</td>
<td>0.01000</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>1</td>
<td>1</td>
<td>0.92000</td>
<td>0.0500</td>
<td>0.01000</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>1</td>
<td>1</td>
<td>0.89300</td>
<td>0.1000</td>
<td>0.01000</td>
<td>0.00</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>0.87500</td>
<td>0.1000</td>
<td>0.00500</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>27</td>
<td>29</td>
<td>-1</td>
<td>1</td>
<td>0.90125</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>-1</td>
<td>1</td>
<td>0.85375</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>29</td>
<td>31</td>
<td>-1</td>
<td>1</td>
<td>0.87500</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>0.88500</td>
<td>0.0500</td>
<td>0.00500</td>
<td>0.00</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>21</td>
<td>33</td>
<td>-1</td>
<td>1</td>
<td>0.87875</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>
پیوست 2 - آزمایش‌های معرفی شده به نرم‌افزار Minitab

<table>
<thead>
<tr>
<th>آزمایش</th>
<th>کوار کام</th>
<th>کوار بورآکس</th>
<th>یکپارچه</th>
<th>پلاسک (میزان نفوذ)</th>
<th>آراش استاندارد</th>
<th>آراش اجرا</th>
<th>بلورهای اجرا</th>
<th>نوع اجرای آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-85625</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.04</td>
<td>16.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0-87875</td>
<td>0.0625</td>
<td>0.00875</td>
<td>0.01</td>
<td>0.04</td>
<td>14.0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0-83500</td>
<td>0.1000</td>
<td>0.00500</td>
<td>0.00</td>
<td>0.06</td>
<td>13.5</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0-87000</td>
<td>0.1000</td>
<td>0.01000</td>
<td>0.00</td>
<td>0.02</td>
<td>20.0</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>0-87750</td>
<td>0.0750</td>
<td>0.00750</td>
<td>0.02</td>
<td>0.02</td>
<td>18.0</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>0-87500</td>
<td>0.0625</td>
<td>0.00875</td>
<td>0.02</td>
<td>0.01</td>
<td>16.0</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>0-90125</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.02</td>
<td>18.0</td>
<td>7</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>0-87625</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.02</td>
<td>14.0</td>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>0-85375</td>
<td>0.0875</td>
<td>0.00875</td>
<td>0.01</td>
<td>0.04</td>
<td>14.0</td>
<td>9</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>0-88125</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.04</td>
<td>14.0</td>
<td>10</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>0-87875</td>
<td>0.0625</td>
<td>0.00875</td>
<td>0.04</td>
<td>0.01</td>
<td>20.0</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>0-87625</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.02</td>
<td>0.01</td>
<td>16.0</td>
<td>12</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>0-87500</td>
<td>0.1000</td>
<td>0.00500</td>
<td>0.00</td>
<td>0.02</td>
<td>20.0</td>
<td>13</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>0-88125</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.04</td>
<td>0.01</td>
<td>14.0</td>
<td>14</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>0-83000</td>
<td>0.1000</td>
<td>0.01000</td>
<td>0.00</td>
<td>0.06</td>
<td>14.0</td>
<td>15</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>0-90125</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.02</td>
<td>0.01</td>
<td>18.0</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>0-83500</td>
<td>0.1000</td>
<td>0.00500</td>
<td>0.06</td>
<td>0.00</td>
<td>26.0</td>
<td>17</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>0-87000</td>
<td>0.1000</td>
<td>0.01000</td>
<td>0.02</td>
<td>0.00</td>
<td>30.0</td>
<td>18</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>0-87375</td>
<td>0.0875</td>
<td>0.00875</td>
<td>0.01</td>
<td>0.02</td>
<td>18.0</td>
<td>19</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>0-88000</td>
<td>0.0500</td>
<td>0.01000</td>
<td>0.06</td>
<td>0.00</td>
<td>48.0</td>
<td>20</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>0-87750</td>
<td>0.0750</td>
<td>0.00750</td>
<td>0.02</td>
<td>0.02</td>
<td>18.0</td>
<td>21</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>0-87500</td>
<td>0.0625</td>
<td>0.00875</td>
<td>0.02</td>
<td>0.01</td>
<td>16.0</td>
<td>22</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>0-87625</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.02</td>
<td>14.0</td>
<td>23</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>0-85375</td>
<td>0.0875</td>
<td>0.00875</td>
<td>0.01</td>
<td>0.04</td>
<td>14.0</td>
<td>24</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>0-88125</td>
<td>0.0625</td>
<td>0.00625</td>
<td>0.01</td>
<td>0.04</td>
<td>14.0</td>
<td>25</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>0-87875</td>
<td>0.0625</td>
<td>0.00875</td>
<td>0.04</td>
<td>0.01</td>
<td>20.0</td>
<td>26</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>0-87625</td>
<td>0.0875</td>
<td>0.00625</td>
<td>0.02</td>
<td>0.01</td>
<td>16.0</td>
<td>27</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>0-87500</td>
<td>0.1000</td>
<td>0.00500</td>
<td>0.00</td>
<td>0.02</td>
<td>20.0</td>
<td>28</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>ناماد</td>
<td>توضيح</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S^2</td>
<td>واریانس نمونه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>تعداد نمونه‌های تصادفی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_i</td>
<td>عضو i-ام نمونه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{x}</td>
<td>میانگین نمونه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>تابع احتمال</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>انحراف معیار نمونه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>مقدار پراپیتنت</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>میانگین جامعه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>نسبت داشتن</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>خطایی که نیاز به آوردن، از آن مقدار بیشتری پایان کرده است</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مراجع

[1] استوار، رحمت‌الله. "اندازه‌گیری‌های جدید از اثرات بهبودیابنده‌ای‌ها در کیفیت مایعات کم‌ماد."

