روشی سریع و آسان برای اندازه‌گیری اسپکتروفوتومتری (DMAZ)

 olehضا زارعی، حمید سیناپور، نمی‌هار قنبری باخدا

 1- دکتران 2- کارشناس ارشد دانشگاه صنعتی مالک اکبر

چکیده

بی‌متیل آمینواتیل آزید (DMAZ) نوعی سوخت کاری‌ویل است که جایگزین مناسبی برای مفتکه‌های مهیدرایزی در صنایع هوافضا به شمار می‌رود. این محیط‌های آمینواتیل آزید (DMAZ) و میکرواریک‌های آن در محقّق‌های بدن با افزایش میله به صورت عالی جذابیتی می‌گردد. تعمیق مقدار محصول استخراج فرآیند در فاز آبی (فسپ) در محیط‌های زنده ماهی و دمای ارتفاع میگوپنی است. محیط‌های آمینواتیل آزید (DMAZ) در محیط‌های زنده ماهی است. این روش برای این سیستم‌های وانژیل، یک روش سریع و آسان برای اندازه‌گیری DMAZ است. از ناحیه‌های عمومی این روش می‌تواند در این زمینه کمک کند. تعداد قطعی و مقدار یک لیتر روزانه استخراج کننده، تغییرات میکرواریک‌های آن در محیط‌های عالی جذابیتی می‌گردد. حذف شرایط پیش‌بینی شده، روش برای اندازه‌گیری

A Fast and Easy Method for Spectrophotometric Determination of Dimethylaminoethyl Azide (DMAZ)

A.R. Zarei*, H. Sinapour, S. Ghanbari Pakdehi
Malek Ashtar University of Technology

Abstract

Dimethylaminoethyl azide (DMAZ) is a good candidate fuel for hydrazine derivatives in aerospace industries. DMAZ is synthesized via the reaction of dimethyl aminoethyl hydrochloride with sodium azide in aqueous solution from which the organic phase is separated after addition of concentrated sodium hydroxide, in the next step. Therefore, the determination of amount of DMAZ in aqueous phase (wastewater) for estimating the efficiency and environmental pollution is essential. In this paper, a fast and easy method for determination of dimethylamino ethylazide (DMAZ) in water samples was developed. The method is based on liquid-liquid extraction of DMAZ from aqueous phase and spectrophotometric determination at λ=283 nm. Affecting parameters extraction including solvent type, amount of solvent, sodium hydroxide concentration and electrolyte concentration were optimized. Under optimized conditions, the calibration graph was linear in the range of 5.0-300 μg mL⁻¹ with detection limit of 1.0 μg mL⁻¹ and relative standard deviation for seven replicate determinations of DMAZ was calculated to be 2.30%. The proposed method was applied for the determination of DMAZ in wastewater samples and the excellent agreement was observed between the proposed method and the gas chromatography.

Keywords: Dimethylaminoethylazide, Spectrophotometric, Liquid-Liquid Extraction, DMAZ.
1- مقدمه

2- آزمایش N, N- دی مethyl اتان آمین با میلی مولی و (DMAZ)

3- واکنش ترکیب اسید و دی سیل آزلاتور

4- موانع ترکیبی

5- روش آزمایش

1 Dimethylaminooxyl azide (DMAZ)
شکل 1- تأثیر غلظت سدیم هیدروکسید در دمای 283 nm بین‌تار نسبت به یک مخلوط

شاده اندزه‌گیری، همیشه درجه بندی مربوط به بسته آماده 2- آنالیز گیری DMAX

به منظور بررسی کارایی روش در انالیز موادهای حیطه‌ای، روش پیشنهادی برای اندزه‌گیری DMAX در پساب فرایند تولید کنار رفت به 300 μg/L، البته میزان اندازه‌گیری DMAX در این مخلوط به 100 μg/L بود.

یک روش استخراج مایع مایع با پخش 2-3 سوز از اصفهان قرار

گرفته می‌شود. به منظور بررسی صحت اندزه‌گیری میزان DMAX در پساب پس از استخراج با یک کرومتوگرافی گاز انجام شد.

کشی مشابه کرومتوگرافی گازی در ذلیل کلینیک اندزه‌گیری

تیتریک (25±20) در درجه مطلق و

تیتریک (25±20) در درجه مطلق و

و اکثر دیگر نیز در تابع DMAX

1- مطالعه طیفی (UV-Vis)

همان طور که در شکل (1) نشان داده شده است مولکول DMAX دارای یک ماکرومیکس بند در طول موج 283 nm، چون یک مافوق و وجود گروه کروموف آزیدی (N=N=N) در ساختار مولکولی می‌باشد. همچنین یک مولکول به دلیل وجود گروه‌های آدیینیک یک مولکول خنثی با گلیتی پنی‌بوده که به راحتی قابل استخراج تخمین و در فاز آن استخراج مشاهده شده است.

نحوه 2- نتایج و بحث

3-1- نتایج و بحث

1. مولکول به دلیل وجود گروه‌های آدیینیک یک مولکول خنثی با گلیتی پنی‌بوده که به راحتی قابل استخراج تخمین و در فاز آن استخراج مشاهده شده است.

2- انتخاب مایع استخراج کننده

یکی از پازکشی‌های موثر در راندمان استخراج انتخاب حلال استخراج
استخراج و آفت‌آسیاب حساسیت روی آف‌افرازیش‌های پیوستهی پولی‌پاکلی‌اکترولیت به محلول حداکثر آنالیز می‌باشد. با افزایش کل‌کاراکتریت اثر آب روی خالی از اطراف آنالیز کاهش پیدا می‌کند و میزان حلالیت آن در حلال استخراج کم‌کاراکتریت می‌پایند. که به‌طور اصلی با خروج کمک‌می‌کند. می‌توان یک کننده که با غلظت‌های بالاتری کل‌کاراکتریت استفاده شد و متقابلیت شکل (5) با استخراج‌های کم‌کاراکتریت سیمی با غلظت کل‌کاراکتریت، پایه‌گذاری بسته‌گیری فیتوتکسی می‌شود. بنابراین، مقدار (w/v) 20 می‌تواند مقدار بهینه انتخاب شد.

شکل 3- تأثیر حجم حل حلال استخراج کردن بر روی سیستم تجزیه‌ای، شرایط:

شکل 4- تأثیر راه حل حلال استخراج کردن بر روی سیستم تجزیه‌ای، شرایط:

1- Salting Out
3-2 کمیته تجزیه‌ای

در جدول (2) پررنگ از کمیته‌های تجزیه‌ای به دست آمده از روش پیشنهادی در اندازه‌گیری دی میلی آمیتو اتانل آیزید فرسیست. هدف است بر اساس داده‌ها به دست آمده، اندازه‌گیری دی میلی آمیتو اتانل آیزید در کستره غلتکی 200-5 میکروگرم بر میلی‌لیتر طبیعی بوده و انحراف استاندارد نسبی (RSD) برای هنگام اندازه‌گیری مکث غلتک غلطک آمیتاب اتانل آیزید از 5 دستگاه آمیتو اتانل آیزید مقدار ۲/۳ به دست آمد.

\[
P = \frac{V_0}{N_{cv}}
\]

فاکتور پیش تنظیم \(V_0 \) به صورت نسب حجم اولیه به حجم فاز تثبیت شده (\(V_{cv} \)) تعیین می‌شود (رابطه 3). توجه به اینکه حجم اولیه محول در یک لوله سانتریفیوژ به حجم 10 میلی لیتر پیدا می‌شود و پس از استخراج حجم فاز تثبیت شده به حجم 5 میکرولیتر (پهلوی لاین) رسیده و اندازه‌گیری جذبی انجام شده است، بنابراین، میزان فاکتور پیش تنظیم 20 بسته می‌آید.

جدول ۱- کمیته‌های اندازه‌گیری در دی میلی آمیتو اتانل آیزید.

<table>
<thead>
<tr>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>منعله‌های کمیته‌های اندازه‌گیری بعد از استخراج (2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>286.7</td>
<td>مانعهاهای کمیته‌های اندازه‌گیری بعد از استخراج (2010)</td>
</tr>
<tr>
<td>286.7</td>
<td>مانعهاهای کمیته‌های اندازه‌گیری بعد از استخراج (2010)</td>
</tr>
<tr>
<td>286.7</td>
<td>مانعهاهای کمیته‌های اندازه‌گیری بعد از استخراج (2010)</td>
</tr>
</tbody>
</table>

جدول 2- بررسی اثر مراحتگذاری گونه‌های ذیکر بر روی اندازه‌گیری در دی میلی آمیتو اتانل آیزید.

| حد تحلیل | گونه |
|----------|------|---|
| 1000 | Na⁺, K⁺, NH₄⁺, Ba²⁺, Mg²⁺, Ca²⁺, Cu²⁺, Zn²⁺, Fe⁺, Cd²⁺, Ni²⁺, Fe⁺⁺ |
| 1000 | N⁺, NO₃⁻, Br⁻, F⁻, SO₄²⁻, SCN⁻, CN⁻, Cl⁻, Br⁻, CO₃²⁻, PO₄³⁻, NO₃⁻ |

مورد ارزیابی قرار گرفت. در ابتدا، به منظور شناسایی اثرات منعی، تنومنه‌ها مختلط گرفته هستند. ابتدا به منظور مشاهده آب شامبل آمیتو اتانل آیزید فرسیست، در ابتدا به منظور شناسایی اثرات منعی، نمونه‌های مختلف آب شامبل از خود آلاینده گرفته و تجویز به دست آمده، نمونه‌های اتمسفر ،\(\text{DMAZ} \) در نمونه‌ها بی‌آبی 1- Relative Standard Deviation (RSD)
2- Preconcentration Factor (PF)
3- Enhancement Factor (EF)

1- گاز راهب روش پیشنهادی در ادامه کسب‌وکار DMAZ
2- گاز راهب روش در ادامه کسب کننده DMAZ
4- نتیجه‌گیری

روش روز اوران تکلولولی و پیچش‌سازی های مختلف در حوزه صنایع دفاعی استفاده از روش‌های حساس با پیچش سریع می‌تواند منجر به کاهش هزینه‌ها و تلاش اندک‌گیری که برای این تحقیق یک روش سریع و قابل اندازه‌گیری است اندازه‌گیریمشابه DMAT در نمونه‌های گروه CDMAT مشاهده شده است.

ملاحظه می‌شود که این روش یک روش پیچش‌سازی با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT مشابه که این روش یک روش پیچش‌سازی با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری نمونه با پیچش سریع و قابل اندازه‌گیری DMAT است استفاده از گازداری N

مراجع

