1- اتوتادیاس

2- دازٚـزٛی واسؿٙاػی اسؿذ

33- تاآثیش جایگضیىی تخشی اص

AP

RDX

4- تشویش مکاویکی، ایمىی ي

عملکشدی پیششاوٍ

َای جامذ مشکة تش پایٍ

HTPB

5- ػیذعثاع يصیشی

1، واصش کشیمی

2- تُشان، داوشگاٌ جامع امام حؼیه(ع)

Email: vaz_in@yahoo.com

(تاسیخ يصًل 29/2/93: تاسیخ پزیشؽ 14/7/93)

رایٍضیٙی رضئی

AP

RDX

ٔٛسد تٛرٝ

tٛاٖ تٝ افضایؾ حؼاػیت تٝ ضشتٝ ٚ دٔا ٚ ٕٞچٙیٗ واٞؾ حؼاػیت تٝ اكطىان ٚ ؿٛن اؿاسٜ وشد.

ياطٌَای کلیذی:

پیششاوٍَای ویتشامیىی، خًاص مکاویکی، خًاص ایمىی، خًاص عملکشدی، پیششاوٍَای جامذ مشکة، RDX.

پتا٘ؼیُ اوؼیذوٙٙذی پشوّشات (AP) تذِیُ خٛاف ٚیظٜ ػّٕىشد خٛب، ػاصٌاسی تا ػایش ارضاء پیـشا٘ٝ ٚ دس دفویذ تطٛس ٌؼتشدٜ دس پیـشا٘ٝ ٞای رأذ ٔشوة ٔٛسد اػتفادٜ لشاس.

پیـشا٘ٝ ٞای ٘یتشأیٙی ؿأُ RDX یا HMX دس حٛصٜ پیـشا٘ٝ ٞای رأذ ٔشوة ساوتی ٚ تفٍٙی تذِیُ ٚیظٌیٟای ا٘شطی تالا ٚ حشاست تـىیُ ٔخثت تٛدٜ ٚ ٕٞچٙیٗ دس ٔٛلغ تزضیٝ، ا٘شطی تالا ٚ حؼاػیت وٕتشی داؿتٝ تاؿٙذ ٞذف تؼیاسی اصٌشٜٚ ا٘ذ 4-1.

افضا یؾ ا٘شطی، ایٕٙی ٔٙاػة تشای پیـشا٘ٝ ٚ فشآیٙذ پزیشی ٔطّٛب، چکیذٌ سال دهم-شماره 4-شماره پياپی45-پایيس 35;5
تاثیر جایگزینی پخی و AP با RDX بر خواص مکانیکی، ایمنی و عملکردی پیشرانه‌های جامد مکرب بر پایه RDX

خواص مکانیکی

دائم انرژی بالا دانسته‌نامه آلایندگی شعله بالا. فقط ذوب

مناسب و پایدار تعیین کننده سطح، عوامل هستند که انتخاب

نیتراتین مناسب برای افزودن به پیشرانه‌ها نشان داده‌اند.

تحقیقات نشان می‌دهد که ترکیبات نیتراتین قادر به بهبود رفتار

زنجر ماتریس پیشرانه‌های است.

پیوسته درصد افزایش طول پیشرانه در ده‌ها مختل تأثیری می‌گذارد.

مرکب برای افزایش آزاد شده شدت و سپری اتصالهای

سافتی ایجاد می‌کند. این ترکیبات مناسب برای پیشرانه‌های

AP/Al/HTPB

\[\text{RDX/Sitakanta Behera} \]

\[\text{Elongation} \]

\[\text{Young's Modulus} \]

\[\text{Tensile Strength} \]

\[\text{1-adiabatic flame temperature} \]

\[\text{2-Specific Impulse} \]

\[\text{3-Performance Index} \]

\[\text{4-Burning Rate} \]

\[\text{5-Pressure Exponent} \]

\[\text{6-Cyclotrimethylene Trinitramine (RDX)} \]

پیشرانه نیتراتین

جدول 1

<table>
<thead>
<tr>
<th>خواص مکانیکی</th>
<th>پیشرانه N/T</th>
<th>AP/Al/HTTPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد افزایش طول</td>
<td>98</td>
<td>95</td>
</tr>
<tr>
<td>استحکام کشتی</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>مدّع بانک</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>جِرگی</td>
<td>1/60</td>
<td>1/67</td>
</tr>
</tbody>
</table>

پیشرانه N/T

 شکل 1

شکل 1

S-1 خلاصه مولکولی

استفاده از RDX در فرمولاسیون پیشرانه سبب تغییر در خواص

مکانیکی می‌شود. با افزودن RDX درصد افزایش طول افزایش یافته و

مدّع بانک و استحکام کشتی کاهش می‌یابد. در جدول 1 خواص

مکانیکی پیشرانه N/T و پیشرانه RDX/Al/HTTPB با هم مقایسه شده است.

جدول 2

<table>
<thead>
<tr>
<th>خواص مکانیکی</th>
<th>پیشرانه N/T</th>
<th>AP/Al/HTTPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد افزایش طول</td>
<td>98</td>
<td>95</td>
</tr>
<tr>
<td>استحکام کشتی</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>مدّع بانک</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>جِرگی</td>
<td>1/60</td>
<td>1/67</td>
</tr>
</tbody>
</table>

برای رسیدن به دانستن آلایندگی شعله بالا تکنیک‌های

مناسب‌تر و سرعت نیرو بالاتر با پیشرانه N/T می‌باشد.

| 1-adiabatic flame temperature |
| 2-Specific Impulse |
| 3-Performance Index |
| 4-Burning Rate |
| 5-Pressure Exponent |
| 6-Cyclotrimethylene Trinitramine (RDX) |

7- Sitakanta Behera
8- Elongation
9-Young’s Modulus
10-Tensile Strength

14

Downloaded from isaem.ir at 14:47 +0430 on Wednesday April 15th 2020
تحقيق و توسعه مواد پرانرشی - سال دهم - شماره 4 - شماره پیاپی 45 - پاییز 1393

3- تأثیر چاپگر RDX با AP بر خواص ایمنی

ایمنی پیشرانه‌ها تحت تأثیر مولکولی مواد شیمیایی می‌باشد. موارد اکسیژن، تخلخل و اندام‌های درمانی دخیل در میزان حساسیت پیشرانه‌ها هستند. اینکه تأثیر اوج مورد استفاده در آن نیز می‌باشد. اکسیکندک‌ها نیز نپاره‌ها، سوخت‌های فلاتر، تعیینکننده‌های سرعت مواد و مواد افزوده اجزای حساس‌کننده که بر ایمنی پیشرانه‌ها مؤثر هستند [17].

2- Impact Sensitive

3- حساسیت به ضرره

ازمین حساسیت به ضرره، مقاومت ماده در مقابل تغییر شکل با سرعت کرنش بالا، را بررسی می‌کند. هدف از این آزمون بررسی حساسیت مواد در برابر ضرره می‌باشد [24]. مواد منفی جریان تانوه نظیر AN و AP در مقایسه با اکسکندک‌های نپاره RDX/HTPB/AN/HTPB

 quelque chose de très difficile à comprendre. Ce ne sont pas des documents de texte de raccourci en persan.
تلیم اندازه‌گیری تغییرات بخشی از AP با RDX بر روی خواص مکانیکی، ایمنی و عملکردی پیشرانه‌های جامد مکربه بر پایه HTPB

جدول ۲- حساسیت به ضربه برای چند ماده منفجه و اکسید کننده[۲۳]...

جدول ۳- مقایسه خواص فیزیکی پیشرانه‌های جامد HMX و AP

جدول ۳- مقایسه خواص فیزیکی حرشویانه جامد HMX و AP [۲۳]

مقایسه بین نتایج قطر بحران مرتبط با حساسیت به ضربه پیشرانه‌های جامد مکربه شانی‌دار دهد که به ارتباط مستقيمی بین قطر بحران پیشرانه و سرعت انفجار (انرژی بالا، اکسیدکان‌دار) وجود دارد. پیشرانه‌های جامد مکربه برای AP/HTPB دارای حساسیت به ضربه بالاتر از RDX/HTPB هستند. حساسیت پایین‌تری پیشرانه‌های جامد مکربه حاوی AP/HTPB بین دیگر این سه سیالات افزایش انرژی آنها (حذف ۴۲۰۰ m/s^2 در مقایسه با پیشرانه‌های جامد مکربه حاوی RDX/HTPB دارای حساسیت به ضربه بالاتر از AP/HTPB) دارد.

پیشرانه‌های جامد مکربه حاوی AP/HTPB دارای حساسیت به ضربه بالاتر از AP/HTPB دارد. این پیشرانه با پیشرانه‌های جامد مکربه حاوی RDX می‌باشد. به اینکه بر حسب ظرفیتی در RDX در فرمولولوژی پیشرانه بسیار قطور بحران و افزایش حساسیت وجود داشته. در نمونه‌سازی ۴ نمود موجود هم که با کاهش دما در RDX بدین درازه‌ها تغییرات حساسیت به ضربه پیشرانه درcompared به پیشرانه‌های جامد مکربه حاوی RDX/HTPB این پیشرانه با پیشرانه‌های AP/HTPB دارد.

پیشرانه‌های جامد مکربه حاوی AP/HTPB دارای حساسیت به ضربه بالاتر از AP/HTPB دارد. این پیشرانه با پیشرانه‌های جامد مکربه حاوی RDX می‌باشد. به اینکه بر حسب ظرفیتی در RDX در فرمولولوژی پیشرانه بسیار قطور بحران و افزایش حساسیت وجود داشته. در نمونه‌سازی ۴ نمود موجود هم که با کاهش دما در RDX بدین درازه‌ها تغییرات حساسیت به ضربه پیشرانه درcompared به پیشرانه‌های جامد مکربه حاوی RDX/HTPB این پیشرانه با پیشرانه‌های AP/HTPB دارد.

پیشرانه‌های جامد مکربه حاوی AP/HTPB دارای حساسیت به ضربه بالاتر از AP/HTPB دارد. این پیشرانه با پیشرانه‌های جامد مکربه حاوی RDX می‌باشد. به اینکه بر حسب ظرفیتی در RDX در فرمولولوژی پیشرانه بسیار قطور بحران و افزایش حساسیت وجود داشته. در نمونه‌سازی ۴ نمود موجود هم که با کاهش دما در RDX بدین درازه‌ها تغییرات حساسیت به ضربه پیشرانه درcompared به پیشرانه‌های جامد مکربه حاوی RDX/HTPB این پیشرانه با پیشرانه‌های AP/HTPB دارد.

پیشرانه‌های جامد مکربه حاوی AP/HTPB دارای حساسیت به ضربه بالاتر از AP/HTPB دارد. این پیشرانه با پیشرانه‌های جامد مکربه حاوی RDX می‌باشد. به اینکه بر حسب ظرفیتی در RDX در فرمولولوژی پیشرانه بسیار قطور بحران و افزایش حساسیت وجود داشته. در نمونه‌سازی ۴ نمود موجود هم که با کاهش دما در RDX بدین درازه‌ها تغییرات حساسیت به ضربه پیشرانه درcompared به پیشرانه‌های جامد مکربه حاوی RDX/HTPB این پیشرانه با پیشرانه‌های AP/HTPB دارد.

پیشرانه‌های جامد مکربه حاوی AP/HTPB دارای حساسیت به ضربه بالاتر از AP/HTPB دارد. این پیشرانه با پیشرانه‌های جامد مکربه حاوی RDX می‌باشد. به اینکه بر حسب ظرفیتی در RDX در فرمولولوژی پیشرانه بسیار قطور بحران و افزایش حساسیت وجود داشته. در نمونه‌سازی ۴ نمود موجود هم که با کاهش دما در RDX بدین درازه‌ها تغییرات حساسیت به ضربه پیشرانه درcompared به پیشرانه‌های جامد مکربه حاوی RDX/HTPB این پیشرانه با پیشرانه‌های AP/HTPB دارد.

پیشرانه‌های جامد مکربه حاوی AP/HTPB دارای حساسیت به ضربه بالاتر از AP/HTPB دارد. این پیشرانه با پیشرانه‌های جامد مکربه حاوی RDX می‌باشد. به اینکه بر حسب ظرفیتی در RDX در فرمولولوژی پیشرانه بسیار قطور بحران و افزایش حساسیت وجود داشته. در نمونه‌سازی ۴ نمود موجود هم که با کاهش دما در RDX بدین درازه‌ها تغییرات حساسیت به ضربه پیشرانه درcompared به پیشرانه‌های جامد مکربه حاوی RDX/HTPB این پیشرانه با پیشرانه‌های AP/HTPB دارد.

پیشرانه‌های جامد مکربه حاوی AP/HTPB دارای حساسیت به ضربه بالاتر از AP/HTPB دارد. این پیشرانه با پیشرانه‌های جامد مکربه حاوی RDX می‌باشد. به اینکه بر حسب ظرفیتی در RDX در فرمولولوژی پیشرانه بسیار قطور بحران و افزایش حساسیت وجود داشته. در نمونه‌سازی ۴ نمود موجود هم که با کاهش دما در RDX بدین درازه‌ها تغییرات حساسیت به ضربه پیشرانه درcompared به پیشرانه‌های جامد مکربه حاوی RDX/HTPB این پیشرانه با پیشرانه‌های AP/HTPB دارد.
تحقیق و توسعه مواد پرانرشی- سال دهم- شماره ۲- شماره پیاپی ۴۵- پاییز ۱۳۹۳

تحمیل یک اپلیاسیون آن بر یک میلیون باشند را می‌شود. پدیده شوک و برخ تمیکی در بسیاری از مواد منفجره خطرناک، حوادث و در بسیاری از برماسه‌های کاربردی سلاح‌های شوک به اندازه‌ای شوک با فاکتور مواد اکسیزن، افزایش می‌یابد. حساسیت به موج شوک در نمای خاص اکسیزن مشخص می‌شود و برای پیشگیری

شکل ۵- طبقه‌بندی حساسیت به حجم، به میزان مواد اکسیزن تکیه‌برنامه‌ای مثل (RDX/27) در بررسی کنترل از مواد اکسیزن AP(۲۴) می‌باشد. بنابراین با جایگزینی بخشی از AP توسط این نتایمی حساسیت به شوک آنها کمتر می‌شود. رابطه‌بین حساسیت به شوک و مواد اکسیزن در متر می‌شود. رابطه‌بین حساسیت به شوک و مواد اکسیزن [۱۱].

با توجه به نمودار شکل ۵ پیش‌ردهای حاوی AP حساسیت به شوک بالاتری نسبت به پیش‌ردهای حاوی RDX/ARAP حساسیت از این نتایج می‌توان استنباط کرد که با جایگزینی بخشی از AP در RDX/ARAP نسبت مواد اکسیزن تکیه کاهش پایه و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. در طرفی می‌توان حساسیت بالایی پیش‌ردهای جامد مراکب یاکشته‌های سیاله اکسیزن، پیش‌ردهای اکسیزن حاوی RDX/ARAP نسبت داد که در نتیجه بر روی حساسیت به شوک نیز تأثیر مستقیم می‌گذارد. حساسیت به شوک پیش‌رده‌های جامد مراکب حاوی RDX/ARAP تغییرات ساختروی (ریخت شناسی)، نقض‌های

داخلی، نقض‌های سطحی و محتوای HMX آن پی‌گیری دارد. [۱۰]

شکل ۶- شماتیکی از آزمون حساسیت به اصطکاک با روش BAM شکل ۷- طبقه‌بندی رابطه‌بین حساسیت به حجم، به میزان مواد اکسیزن [۱۱].
تأثیر جایگزینی بخشی از AP با RDX بر خواص مکانیکی، ایمنی و عملکردی پیشرانهای جامبد مرکب بر پایه HTPB

3: RDX دس ٔمایؼٝ ... ٞای
حاٚی RDX ػشػت ػٛصؽ پاییٗ تشی داس٘ذ35.

شکل9- احش ٔحتٛایAP تش ػشػت ػٛصؽ پیـشا٘ٝ RDX/AP/Al/HTPB
[35.

1- Thrust
2- Chamber Pressure
3- Characteristic Velocity
4- Temperature Sensitivity
تحقیق و توسعه مواد پرانرشی- سال دهم- شماره ۴- شماره پیاپی۱۴۰۲- ۱۶

سوز سوز در دردناه (۲۰۱۷) ترتیب اندازه‌گیری سرعت سوز سوز پرانرشی‌ها در حفاظت‌های زنگ و همکاری‌های نشان می‌دهد که گرمای پارکشی RDX/Al/HTPB کاهش می‌یابد از آن‌جا که سرعت سوز سوز پارکشی از فاز گازی رابطه مستقیم دارد.

شکل ۱۱- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۱- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱) گرمای پارکشی RDX/Al/HTPB

یکی دیگر از دلایل کاهش سرعت سوز پارکشی AP/Al/HTPB، ایجاد یک لايه مانداب در سطح سوز پارکشی بدیل حضور AP می‌باشد که با را پوشش ثابت دارد. در نتیجه باند کاهش سرعت سوز سوز می‌باشد (۴۰۰). با توجه به اینکه ذوب AP (۸۵۰۰۰۰) می‌باشد، ذرات RDX پسری ریز به دمای ذوب نسبتاً پایین نمی‌شود که سرعت سوز RDX به دمای ذوب سبب می‌شود. ولی در این حالت دیدار سرعت سوز سوز از دستورالعمل RDX سبب در اثر افزایش دمای ذوب شدن یک یا دویناب نظام مورد نظر نمی‌شود. ولی در این حالت دیدار سرعت RDX به دمای ذوب سبب می‌شود. ولی در این حالت دیدار سرعت RDX به دمای ذوب سبب می‌شود. ولی در این حالت دیدار سرعت RDX به دمای ذوب سبب می‌شود. ولی در این حالت دیدار سرعت RDX به دمای ذوب سبب می‌شود. ولی در این حالت دیدار سرعت RDX به دمای ذوب سبب می‌شود. ولی در این حالت دیدار سرعت RDX به دمای ذوب سبب می‌شود. ولی در این حالت دیدار سرعت RDX به دمای ذوب سبب می‌شود. ولی در این حالت دیدار سرعت RDX به دمای ذوب سبب می‌شود. ولی در این حالت دیدار S

تاثیروی شیشه‌ای در اثر اندازه‌گیری دیدار سرعت RDX/Al/HTPB در اثر اندازه‌گیری دیدار سرعت RDX/Al/HTPB در اثر اندازه‌گیری دیدار S

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)

شکل ۱۰- دسکرتاژ ػتتشیت ای دس ٘ضدیتی ػتط تاؿذ، رسات، تٝ ایٙىٝ دٔای رٚب یزتٝ (۱)
تأثير جایگزینی بعضی از AP بر خواص مکانیکی، ایمنی و عملکردی پیشرانه‌های جامد مربوط به AP

<table>
<thead>
<tr>
<th>بیشترانه AP برAPA</th>
<th>بیشترانه AP برAPA</th>
<th>چواست مکانیکی</th>
<th>ایمنی</th>
<th>عملکرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDX/2AP (1/3)</td>
<td>RDX/2AP (1/3)</td>
<td>نوگ و درصد (کسیدکندن)</td>
<td>4/6 (AP)</td>
<td>1488</td>
</tr>
<tr>
<td>RDX/2AP (1/3)</td>
<td>RDX/2AP (1/3)</td>
<td>سرعت (mm/s)</td>
<td>6/8</td>
<td>2442</td>
</tr>
<tr>
<td>RDX/2AP (1/3)</td>
<td>RDX/2AP (1/3)</td>
<td>سرعت (mm/s)</td>
<td>6/8</td>
<td>2442</td>
</tr>
<tr>
<td>RDX/2AP (1/3)</td>
<td>RDX/2AP (1/3)</td>
<td>منشأ RDX/2AP (1/3)</td>
<td>2/2</td>
<td></td>
</tr>
</tbody>
</table>

شکل 0: تغییر خواص عملکدی پیشرانه

شکل 12- نمودار حساسیت دما بین RDX

باتوجه به شکل‌های 11 و 12 از افزایش فشار، حساسیت دما باید افزایش یابد. افزایش شدت در پیشرانه‌های جامد مربوط به AP افزایش می‌کند. با افزایش فشار منجر به افزایش حرارتی رابطه سیستمی دارد. افزایش دما تجزیه دارای RDX حزینی بیش از مقدار افزایش حرارتی و دما واکنش حرارتی پایینتر نسبت به AP از این مقدار AP رسیده است (۱۲۱۳). نیز سرعت حذف دما بیشتر این مقدار می‌باشد. حساسیت دما باید تنها در حساسیت دما بالاتر و ترکیب RDX/2AP (1/3) جایگزینی AP با AP چنین تغییر می‌کند.

شکل 2- تغییر حساسیت دما بین RDX

شکل 3- تغییر حساسیت دما بین RDX

شکل 4- تغییر حساسیت دما بین RDX

شکل 5- تغییر حساسیت دما بین RDX

شکل 6- تغییر حساسیت دما بین RDX

شکل 7- تغییر حساسیت دما بین RDX

شکل 8- تغییر حساسیت دما بین RDX

شکل 9- تغییر حساسیت دما بین RDX

شکل 10- تغییر حساسیت دما بین RDX

شکل 11- تغییر حساسیت دما بین RDX

شکل 12- تغییر حساسیت دما بین RDX

شکل 13- تغییر حساسیت دما بین RDX

شکل 14- تغییر حساسیت دما بین RDX

شکل 15- تغییر حساسیت دما بین RDX

شکل 16- تغییر حساسیت دما بین RDX

شکل 17- تغییر حساسیت دما بین RDX

شکل 18- تغییر حساسیت دما بین RDX

شکل 19- تغییر حساسیت دما بین RDX

شکل 20- تغییر حساسیت دما بین RDX

شکل 21- تغییر حساسیت دما بین RDX

شکل 22- تغییر حساسیت دما بین RDX

شکل 23- تغییر حساسیت دما بین RDX

شکل 24- تغییر حساسیت دما بین RDX

شکل 25- تغییر حساسیت دما بین RDX

شکل 26- تغییر حساسیت دما بین RDX

شکل 27- تغییر حساسیت دما بین RDX

شکل 28- تغییر حساسیت دما بین RDX

شکل 29- تغییر حساسیت دما بین RDX

شکل 30- تغییر حساسیت دما بین RDX

شکل 31- تغییر حساسیت دما بین RDX

شکل 32- تغییر حساسیت دما بین RDX

شکل 33- تغییر حساسیت دما بین RDX

شکل 34- تغییر حساسیت دما بین RDX

شکل 35- تغییر حساسیت دما بین RDX

شکل 36- تغییر حساسیت دما بین RDX

شکل 37- تغییر حساسیت دما بین RDX

شکل 38- تغییر حساسیت دما بین RDX

شکل 39- تغییر حساسیت دما بین RDX

شکل 40- تغییر حساسیت دما بین RDX

شکل 41- تغییر حساسیت دما بین RDX

شکل 42- تغییر حساسیت دما بین RDX

شکل 43- تغییر حساسیت دما بین RDX

شکل 44- تغییر حساسیت دما بین RDX

شکل 45- تغییر حساسیت دما بین RDX

شکل 46- تغییر حساسیت دما بین RDX

شکل 47- تغییر حساسیت دما بین RDX

شکل 48- تغییر حساسیت دما بین RDX

شکل 49- تغییر حساسیت دما بین RDX

شکل 50- تغییر حساسیت دما بین RDX

شکل 51- تغییر حساسیت دما بین RDX

شکل 52- تغییر حساسیت دما بین RDX

شکل 53- تغییر حساسیت دما بین RDX

شکل 54- تغییر حساسیت دما بین RDX

شکل 55- تغییر حساسیت دما بین RDX

شکل 56- تغییر حساسیت دما بین RDX

شکل 57- تغییر حساسیت دما بین RDX

شکل 58- تغییر حساسیت دما بین RDX

شکل 59- تغییر حساسیت دما بین RDX

شکل 60- تغییر حساسیت دما بین RDX
واکنش‌های شیمیایی مختلف مستقل از فشار محفظه (Pc) استفاده شود.
سرعت مشخصه برای مقایسه عملکرد نسبی طراحی‌های سایر
پیشرانه‌ها و پیشرانه‌های مختلف استفاده می‌شود.
برای پیشرانه‌ها در محدوده 100-1200 ms−1 با توجه به شکل 12 و مقایسه محصولات حاصل از حرق
AP و RDX می‌باشد و همچنین با توجه به AP و RDX به دامان شعله بالاتری تراست و به‌طور جهشی
به راه‌انداز پیشرانه‌های جامد مکرب با مقدار متفاوت از
فشار محفظه احتمالی کاهش با توجه به رابطه مستقیم بین
فشار محفظه و سرعت مشخصه، سرعت مشخصه نیز کاهش
می‌یابد [6].

5- نتیجه گیری
پیشرانه یا گیگانتیبخشی تأثیر RDX در فرمولاسیون پیشرانه
های جامد مکرب، عملکرد و خواص کرنشی مطلوب و سازگاری پیشرانه با
می‌باشد زیر را نشان می‌دهد. پیشرانه‌های نیترامینی حاوی
RDX از ایده‌الملی تیمی و محلان و استخنک کشنده
کمتری نسبت به پیشرانه‌های اثاثدار خاوتی
دارند. حساسیت به ضربه و حساسیت دامی پیشرانه‌ها با توجه به
کمتری از دیگر پیشرانه‌های نیترامینی
نسبت به پیشرانه‌های اثاثدار (RDX/AP/Al/HTPB)
می‌باشد. علاوه بر این، جایگزینی
پیشرانه‌های AP/Al/HTPB به‌طور همزمان نمی‌تواند به‌طور کامل به‌طور
سوژوی و فشار مشخصه می‌شود. لذا در جمع بندی
تعداد گوناگونی برای سیستم‌های خواص سوزشی بالاتری می‌باشد و
پیشرانه‌های جامد مکرب با فشار نسبت به
فهمه‌های دندانی از جایگزینی بخشی از
نوع‌های مختلف به‌طور کامل سایر اثرات و
می‌تواند جهت مقایسه بارها چنین شناخته‌شود.

 Hierarchical embellishments...لا زمان
بر سرعت ناش و خواص مکانیکی نوعی سوخت
XLDB و دوم کاهش قابل...سامان

[18] Uemura, M. “Mechanical Properties of Solid Propellants and Their Correlation to Burning Characteristics.”; University of Tokyo, Japan.

[34] Lecame, S.; Lefrançois, A. “Structural and Chemical Changes in PBX Induced by Rapid Shear Followed by Compression.”; SNPE Propulsion 2002.

