تأثیر جایگزینی بخشی از AP با RDX بر خواص مکانیکی، ایمنی و عملکردی پیشرانه‌های جامد مركب بر پایه HTPB

چکیده

جایگزینی جزئی AP با RDX مورد توجه بسیاری از محققین می‌باشد. در این مقاله، ابتدا دلایل جایگزینی بخشی از AP بر خواص مکانیکی، ایمنی و عملکردی پیشرانه‌های جامد مركب بررسی شده است. استفاده از نیترات‌ها در فرمولایسیون پیشرانه سبب تغییر در خواص مکانیکی از جمله انرژی ازدید و کاهش مداوم پایک و افزایش کششی می‌شود. نتایج نشان می‌دهد که افزایش AP بهبود فراکسیدنیزی که در آنتز جایگزینی AP با RDX باعث نیترات حل و بهبود حل RDX و تغییر در خواص پیشرانه‌های جامد مركب راکن و تغییر راه‌های حرارتی با نتیجه‌گیری تحقیقاتی می‌باشد.

واژه‌های کلیدی: پیشرانه‌های نیترامینی، خواص مکانیکی، خواص ایمنی، خواص عملکردی، پیشرانه‌های جامد مركب، RDX

1- مقدمه

اکسیدنده جزء اصلی پیشرانه جامد مركب است که بخش از ۲۰٪ وزن پیشرانه را تشکیل می‌دهد. امیوتوم پرکرات (AP) بدلیل خواص ویژه نظر عملکرد خوب، سازگاری با سایر اجزاء پیشرانه و در دسترس بودن آن، بطور گسترده در پیشرانه‌های جامد مركب مورد استفاده قرار می‌گیرد. پتانسیل اکسیدکننده پرکرات‌ها با استفاده از این عامل باعث ایجاد عملکرد بالا در پیشرانه‌های تولید توسط می‌گردد ولی با محدودیت زیست‌سازگاری نسیبند و تولید اماری نخیله از همچنین تولید HCl و دیگر ترکیبات سمی و خون‌بلد در قالب‌های خروجی، می‌کند که دو دیدگی

1- استادیار

2- دانشجوی کارشناسی ارشد
تأثیر یا جایگزینی AP با RDX بر خواص مکانیکی، ایمنی و عملکردی پیشرانه‌های جامد مربوط به AP با RDX

- تأثیر یا جایگزینی AP با RDX بر خواص مکانیکی

**خواص مکانیکی بهتر گنجانده و ترکیب می‌شوند. تحقیقات بهتر و همکارانش بر روی خواص مکانیکی پیشرانه‌های جامد مربوط به RDX/Al/HTPB نشان می‌دهد که این پیشرانه‌ها در رابطه با RDX در افزایش تنش، استحکام، مدول و اندازه پیشرانه‌های پیشران به وسیله شکل‌دهی و آزاده سازی پیشرانه‌های پیشرانه‌های پیشران به وسیله شکل‌دهی و آزاده سازی (RDX/Al/HTPB) معادل می‌شود. مدل‌های محاسباتی را می‌توان از طریق سیاست‌های افزایش و کاهش سرعت تغییر استحکام و مدول پیشرانه‌های پیشران به وسیله شکل‌دهی و آزاده سازی (RDX/Al/HTPB) با توجه به ساختار مولکولی RDX مناسب‌تر و سرعت سوزش بالاتر، باعث اولات تک اجزاء از رده استفاده می‌شوند.

![شکل 1- ساختار مولکولی RDX](RDX)

استفاده از RDX در فرمولاسیون پیشرانه‌های انرژی اولیه در فرمولاسیون پیشرانه‌ها مورد استفاده قرار می‌گیرد.

تأثیر یا جایگزینی AP با RDX بر خواص مکانیکی و ایمنی و عملکردی پیشرانه‌های جامد مربوط به AP با RDX نشان می‌دهد که این پیشرانه‌ها در رابطه با RDX در افزایش تنش، استحکام، مدول و اندازه پیشرانه‌های پیشران به وسیله شکل‌دهی و آزاده سازی (RDX/Al/HTPB) معادل می‌شود. مدل‌های محاسباتی را می‌توان از طریق سیاست‌های افزایش و کاهش سرعت تغییر استحکام و مدول پیشرانه‌های پیشران به وسیله شکل‌دهی و آزاده سازی (RDX/Al/HTPB) با توجه به ساختار مولکولی RDX مناسب‌تر و سرعت سوزش بالاتر، باعث اولات تک اجزاء از رده استفاده می‌شوند.

<table>
<thead>
<tr>
<th>پیشرانه‌های نیترامینی</th>
<th>خواص مکانیکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDX/Al/HTPB</td>
<td>58</td>
</tr>
<tr>
<td>RDX/Al</td>
<td>9</td>
</tr>
<tr>
<td>AP/HTPB</td>
<td>9</td>
</tr>
<tr>
<td>تنش (kg/cm²)</td>
<td>39</td>
</tr>
<tr>
<td>مدول انگک (kg/cm²)</td>
<td>1/67</td>
</tr>
<tr>
<td>جگال (gs/cm³)</td>
<td>1/67</td>
</tr>
</tbody>
</table>

- تأثیر یا جایگزینی AP با RDX بر خواص مکانیکی

*1- adiabatic flame temperature
2- Specific Impulse
3- Performance Index
4- Burning Rate
5- Pressure Exponent
6- Cyclotrimethylene Trinitramine (RDX)*
حاصله بالی، داشته باشند و با توجه به طول L/D(در 0.8-1.70) و افتضاح یازدی، می‌باشد.

2-Impact Sensitive

1-Hard segment

\[\text{RDX/HTPB} \]
تأثیر جایگزینی بخشی از AP با RDX بر خواص فیزیکی حرارتی، ایمنی و عملکرد پیشرانه‌های جامد بر پایه HTPB

دلیل انتخاب تشكل بالا در حسابیت بیشتری در برآور محور-های مکانیکی هستند. افزایش انتقال تشكل بیشتر باعث می‌شود که بیشتری به وسیله شیمیایی واکنش‌بندی بودنی، محیط انرژی در واحد جرم این ماده افزایش یافته و سپس تبدیل بیشتر این ماده در شرکت در واکنش شیمیایی شود. در جدول 2 میزان حسابیت چند اکسید کننده نشان داده است.

جدول 2- حسابیت به بحران درج جاده منفی و اکسید کننده

| ماده منفی‌بر |
|------------|---------------------------------|
| cm | m/s |
| 98 | 94 |
| 77 | 75 |
| 54 | 53 |
| 33 | 32 |
| 11 | 10 |

جدول 2- مقایسه خواص فیزیکی حرارتی بیشتری در جاده حاوی AP و RDX

| H/N50 |
|-------|---------------------------------|
| cm | m/s |
| 98 | 94 |
| 77 | 75 |
| 54 | 53 |
| 33 | 32 |
| 11 | 10 |

مکانیسم نوع حسابیت به مرتبیت حسابیت به صورت پیشرانه بار از مکانیکی شناخته می‌شود که به اثری است که در بررسی FTIR در فاز مقابل کنونی می‌شود و بیشتر تجزیه به‌طور خودی در فاز AP
بخار ره دهد. فاز مداوم بخار قبل از تجزیه حرارتی و پس از اشتعال، تولید ایناره (گونه) حرارتی برای جلوگیری از اشتعال دما می‌کند. نتایج این دمای اشتعال پیشرانه‌های حاوی AP بنابراین دمای اشتعال قابلیت انفجار بیشتری دارد حسابیت از پیشرانه‌های حاوی AP

فاکتورهایی که حسابیت به ضربه را کنترل می‌کنند عبارتند از: به‌طور خاص مکانیکی با نخ کرنش بالا که توسط مدل تجزیه (نموناً خالص) در مقابل تردد و مکانیسم‌های اشتعال ضرایبی را تحت تأثیر قرار می‌دهد.

ب - خواص حرارتی، دمای ذوب، دمای اشتعال، قدردانی ویژه، قدردانی ویژه در نهایت حسابیت به ضربه پیشرانه. بیراکتورهای شنیده را در فرمول‌سازی پیشرانه به کاهش قطر در نظر می‌گیرد. در نتیجه این درجه حرارت‌ها حسابیت به ضربه ترکیبی از خواص حرارتی دمای ذوب، قدردانی ویژه (AP/HTPB) و HTPB می‌شود. عضو (AP/HTPB) را به‌طور کلی به حسابیت از این RDX کمتر

کاهش اندازه ذرات در فرمول‌سازی پیشرانه به‌طور کلی به حسابیت اثر می‌گذارد. در نتیجه این درجه حرارت‌ها حسابیت به ضربه ترکیبی از خواص حرارتی دمای ذوب، قدردانی ویژه (AP/HTPB) و HTPB می‌شود. عضو (AP/HTPB) را به‌طور کلی به حسابیت از این RDX کمتر

نظرات: شکل 2- منحنی حسابیت به ضربه برای اندام ذرات منفی‌بر

2-Karpowicz and Brill
3-Heat sink

1-Velocity of detonation
ب) حساسیت به شوک

موجی که امکان‌های آن بزرگتر از حد معمول باشد، را موجب شود شوک روانی پدیده شود و برچهکی در بمب‌سازی از ماده منفجره خطرناک، حوادث و در بمب‌سازی از برنامه‌های کاربردی سلاح‌های عمومی می‌شود.[29]

تحت‌های تحقیقات این می‌داند که حساسیت به شوک با افزایش مولکول‌های آسیاکسیثن، افزایش می‌یابد. حساسیت به شوک با استفاده خواص اکسپلودونه مشخص می‌شود و برای پیشرانه‌های دارای راه‌نمایان- HTPB با افزایش مولکول‌های آسیاکسیثن، بیشتر می‌شود.

[29]

میزان مولکول‌های آسیاکسیثن ترکیبات نتیجه‌برداری مثل HMX/RDX (20/6) بسیار کمتر از مولکول‌های AP (34) می‌باشد. بنابراین با جایگزینی بخشی از AP توسط این نتیجه‌برداری حساسیت به شوک آنها کمتر می‌شود. رابطه بین حساسیت به شوک و مولکول‌های آسیاکسیثن در شکل 5 نشان داده شده است.[[11]]

شاخص ۵- رابطه بین حساسیت به شوک و مولکول‌های آسیاکسیثن.[[11]]

با توجه به نمودار شکل ۵، پیشرانه‌های حاوی AP حساسیت به شوک بالاتری نسبت به پیشرانه‌های حاوی HMX را دارند. این نتایج در RDX/AP نشان می‌دهند که با جایگزینی بخشی از AP در RDX، حساسیت به شوک بالاتری نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر نسبت به پیشرانه‌های حاوی RDX کاهش یافته و در نتیجه حساسیت سیستم به شوک کمتر می‌شود. از طرفی می‌توان حساسیت بالاترپیشرانه‌های جامد کم‌کردن را به واکنش‌های بسیار قوی‌تر، با اکسپلودونه تأثیر کرده و در نتیجه تبدیل مولکول‌های آسیاکسیثن بالاتر N-1- Shock Sensitivity
N-2- Morphology
تأثیر جایگزینی بخشی از AP با RDX بر خواص مکانیکی، ایمنی و عملکردی پیشرانه‌های جامع مرکب بر پایه HTPB

با توجه به نتایج بدست‌آورده، تأثیر تغییرات میزان AP بر سرعت سوزش نمونه‌های تولید شده، می‌توان نتیجه گرفت که با جایگزینی AP نماینده‌های دیگری مانند HMX، RDX و یا از طریق تثبیت در حالت طبیعی در فرمولاسیون، مقادیر سرعت سوزش در فارشهای مختلف کاهش یافته است.

شکل 9: خواص عملکردی برخی از ویژگی‌های برجسته پارامترهای عملکردی پیشرانه‌های راکت

1- Thrust
2- Chamber Pressure
3- Characteristic Velocity
4- Temperature Sensitivity
نتایج آنالیزگیری سرعت سوخت پیش‌ران‌ها در تحقیقات زالگ واوی و همکارانش نشان می‌دهد که گرمای بالا و باعث کاهش سرعت سوخت پیش‌ران‌ها از فازگزی به سطح سوخت رابطه مستقیم دارد. یکی دیگر از دلایل کاهش سرعت سوخت پیش‌رانحای AP/Al/HTTPB نسبت به پیش‌ران‌های RDX/Al/HTTPB این آبادی که با RDX لایه مناسب در سطح سوخت پیش‌رانی بدلیل حضور AP می‌باشد که با ذوب شدن این لایه حسکی از شعله AP را پوشش داده. در نتیجه بدت کاوش سرعت سوخت پیش‌ران‌های AP/Al/HTTPB (207-235KJ/mol) کمتر از دمای ذوب AP سبب ریز ریزی ریزی RDX با توجه به دمای ذوب نسبتاً پایین در مقایسه ذوب AP دمای ذوب سوخت AP به صورت یک لنز در حدود حدود $553K$ ریز در نهایت اختلافی با حسکی نزدیک با ساختار شعله نفوذی را تحت تأثیر قرار دهد. با محاسبه $\frac{\partial \ln r}{\partial T_0}$ سرعت سوخت پیش‌ران‌های AP/Al/HTTPB به اندازه ذرات را کاهش دهد.\[1\]

لحظه 1- تغییرات سرعت سوخت با توجه به اندازه ذرات نفوذی در RDX/Al/HTTPB

نتایج آنالیزگیری سرعت سوخت پیش‌ران‌ها توجه به نوع سوخت و ثابت می‌کند که سوخت چهار ذرات با ذوب شدن باعث پیش‌ران‌های RDX/Al/HTTPB این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله نفوذی اولیه این تغییرات را جلب می‌کند. در نتیجه نشان می‌دهد که با تغییرات مکانیسم شعله N1-Beckstead (Beckstead, Derr and Price Model)
تاثیر جایگزینی بخشی از AP با RDX بر خواص مکانیکی، ایمنی و عملکردی پیشرانه‌های جامد مکمل بر پایه RDX/HTPB

جدول ۴- مقایسه خواص عملکردی پیشرانه

<table>
<thead>
<tr>
<th>پیشرانه AP/HTPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP/HTPB</td>
</tr>
<tr>
<td>RDX/Al/HTPB</td>
</tr>
<tr>
<td>RDX/Al/HTPB (۸/۶)</td>
</tr>
<tr>
<td>RDX/Al/HTPB (۹/۷)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>خواص عملکردی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضعیت و دصر (کپسیل/درصد)</td>
</tr>
<tr>
<td>سرعت (سایتهای نوزنی)</td>
</tr>
<tr>
<td>سرعت (سایتهای مسحتی)</td>
</tr>
<tr>
<td>دمای شعله (K)</td>
</tr>
<tr>
<td>تا فشار (KP)</td>
</tr>
<tr>
<td>تا دمای ۲۰۰۰ (μv)</td>
</tr>
</tbody>
</table>

شکل ۱۲- نمودار حساسیت دمایی RDX

بنا بر جدول بالا، در میان مواد مورد بررسی، حساسیت دمایی افزایش می‌یابد و حداقل حساسیت دمایی AP ۳۰۰ درجه سانتی‌گراد و حداقل حساسیت دمایی RDX/HTPB ۲۰۰ درجه سانتی‌گراد است. در ضمن، روند کلی افزایش حساسیت دمایی حداکثر در دمای بالا چنین زیر است. افزایش حساسیت دمایی، افزایش حساسیت دمایی حداکثر در دمای بالا چنین زیر است.

نیترامین‌های مانند HMX و RDX

نیترامین‌های مناسب (۱۰۰/۶) نسبت به AP (۳۰/۶)، دارای عملکردی توانایی اکسیدان بهتر باعث کمتری از AP نسبت به AP مستند مناسب‌تر می‌باشند. با پایداری بخشی از AP در این حالت، اثرات کریستال‌های چدن در توانایی اکسیدان بهتر است. به‌طور کلی، نیترامین‌ها به دلیل کمترین حساسیت دمایی کمترین کمکی از عوامل می‌باشند که حساسیت دمایی، دمای خود استحکام داشته. مواد پراستیزی با مقادیر انرژی آزاد شده بیشتر، دارای حساسیت دمایی بالاتری هستند. با توجه به اینکه دمای خود استحکام دارای حساسیت حاصل در حالت دارای خورشیدی سبب افزایش دمای خود استحکام شد. با دمای حساسیت حاصل در دمای واکنش حرارتی پایان تری نسبت به AP اکسیدان بهتر AP است. با پایداری جویان دمای خود استحکامی بیشتر نیترامین‌ها امکان حساسیت دمایی آن نیز کمتری می‌باشد. با پایداری بخشی از AP نیترامین‌ها حساسیت DMY با AP جایگزینی بخشی از AP جایگزینی بخشی از AP جایگزینی Bخشی از AP جایگزینی Bخشی از AP جایگزینی Bخشی از AP
و اکتشاهی شیمیایی مختلف مستقل از فشار محکف (p, m) استفاده شود. سرعت مشخصه برای مقایسه عملکرد نسبی طراحی‌های سیستم پیشران راک شیمیایی و پیشرانه‌های مختلفی استفاده می‌شود. برای پیشرانه‌ها در محدوده 1000-10000 ms⁻¹، تا به چهار و RDX بین محصولات اختلافات سیکترونیک می‌باشد و همچنین با توجه به دمای شعله بالاتر آن، RDX به نسبت به RDX به جایگزینی خشیک از AP با RDX فشار محکف احتراق کاهش و با توجه به رابطه مستقیم بین RDX فشار محکف و سرعت مشخصه، سرعت مشخصه نیز کاهش می‌یابد.

متغیرات

1. AP
2. RDX
3. ایمنیت
4. T
5. P
6. مایع
7. نیروی
8. کتالیزور
9. تأمینکر
10. ایمنیت
11. T
12. P
13. m

مراجع

[1] A. B. میلی و دی‌هی، تحلیل مقایسه عملکرد نسبی طراحی‌های سیستم پیشران راک شیمیایی و پیشرانه‌های مختلفی استفاده می‌شود. برای پیشرانه‌ها در محدوده 1000-10000 ms⁻¹، تا به چهار و RDX بین محصولات اختلافات سیکترونیک می‌باشد و همچنین با توجه به دمای شعله بالاتر آن، RDX به نسبت به RDX به جایگزینی خشیک از AP با RDX فشار محکف احتراق کاهش و با توجه به رابطه مستقیم بین RDX فشار محکف و سرعت مشخصه، سرعت مشخصه نیز کاهش می‌یابد.

تأثیر جایگزینی بخشی از AP با RDX بر خواص مکانیکی، ایمنی و عملکردی پیشرانه‌های جامد مرکب بر پایه HTPB

[12] [پیام سیاسی]

[18] Uemura, M. “Mechanical Properties of Solid Propellants and Their Correlation to Burning Characteristics.”; University of Tokyo, Japan.

[23] [پیام سیاسی]

